You are currently browsing the category archive for the ‘Visual Studio’ category.

To implement an interface is to set up one contract between two code blocks, where the block that implements the interface is committed to implement specifically the methods defined by the interface.

At glance this sounds somehow weird. The question that arises is: Don’t I’m complicating my life? It depends…

Let’s suppose that, in the frame of a process, we have a heterogeneous set of objects that we unknown. Some have a serialization method named Save, if the method exists, then this is the responsible of the object persistence. If doesn’t exist such Save method, the object is persisted in the database by another method.

The question is how to find out, in runtime, if an object is implementing one method with a specific name? The following attempts to answer this. To develop that example, you will need to start Visual Studio and create one project of windows Console type for Visual Basic or C#.

Now we create the interface ISerializable, that contains the Save function that returns a boolean value:

[VB]

Public Interface ISerializable

Function Save() As Boolean

 End Interface

[C#]

using System;

interface ISerializable

{

bool Save();

}

By convention the names of the interfaces are prefixed with an “I” for better identification.

Then we are going to create one class, named PettyControl, with one unique property named Data of string type:

[VB]

Public Class PettyControl

Private mData As String

Public Property Data() As String

Get

Return mData

End Get

Set(ByVal value As String)

mData = value

End Set

End Property

End Class

[C#]

using System;

public class PettyControl

{

protected string Data;

public string data

{

get

{

return Data;

}

set

{

Data = value;

}

}

}

I define now one control, named myControl, that inherits from PettyControl and implements the ISerializable interface.

[VB]

Public Class myControl

Inherits PettyControl

Implements ISerializable

Public Sub New()

Data = “These are the test data…”

End Sub

Public Function Save() As Boolean

Implements ISerializable.Save

Console.WriteLine(“Saving…{0}”, Data)

Return True

End Function

End Class

[C#]

using System;

class myControl : PettyControl, IValidate, ISerializable

{

public myControl()

{

data = “These are the test data…”;

}

public bool Save()

{

Console.WriteLine(“Saving…{0}”, data);

return true;

}

}

In this way we have implemented the Save method of ISerializable interface. You will see that when typing the code line referred to the implementation of the interface, when you click on Enter, Visual Studio writes automatically the header of the function that the interface defines.

At this point, we know how to implement an Interface.

Now the problem is to know, programmatically, if one class implements some specific interface. For the example we are seeing, in concrete terms, is to know whether the class has implemented some Save method, in other words, if the class implements some serialization method.

So,we are going to write the application that will start in console, naming it App.

[VB]

Module App

Sub Main()

Console.WriteLine(“Visual Basic Version”)

Dim myControl As New myControl

Dim ser As ISerializable = DirectCast(myControl, ISerializable)

Dim success As Boolean = ser.Save

Console.WriteLine(“‘{0}’ Validation was{1}success.”, myControl.Data, IIf(success, ” “, ” not “))

End Sub

Console.ReadLine()

End Module

[C#]

class App

{

public static void Main()

{

Console.WriteLine(“C# Version”);

myControl myControl = new myControl();

ISerializable ser = (ISerializable)myControl;

bool success = ser.Save();

Console.WriteLine(“‘{0}’ Validation was{1}success.”, myControl.data, (success ? ” “ : ” not “));

}

Console.ReadLine();

}

This seems to work, but if the interface is not implemented “DirectCast(myControl, ISerializable)” in VB, or “(ISerializable)myControl” in C#, both in this case fail.

The correct way to ask is: “TypeOf (myControl) Is ISerializable”, in VB, or “myControl Is ISerializable” in C#. Let’s see:

[VB]

Module App

Sub Main()

Console.WriteLine(“Visual Basic Version”)

Dim myControl As New myControl

If TypeOf (myControl) Is ISerializable Then

Dim ser As ISerializable = DirectCast(myControl, ISerializable)

Dim anotherSuccess As Boolean = ser.Save

Console.WriteLine(“{0}’ Have{1}been successfully saved., myControl.Data, IIf(anotherSuccess, ” “, ” not “))

End If

Console.ReadLine()

End Sub

End Module

[C#]

class App

{

public static void Main()

{

Console.WriteLine(“C# Version”);

myControl myControl = new myControl();

if (myControl is ISerializable)

{

ISerializable ser = (ISerializable)myControl;

bool anotherSuccess = ser.Save();

Console.WriteLine({0}’ Have{1}been successfully saved., myControl.data, (anotherSuccess ? ” “ : ” not “));

}

Console.ReadLine();

}

}

This works fine in both languages. But there is an optimized way, in terms of MSIL.

In VB, “TryCatch” is used, which evaluates whether the interface is implemented, if doesn’t it, doesn’t return an error but instead Nothing. In C# this is analogous to the “as” operator.

[VB]

Module App

Sub Main()

Console.WriteLine(“Visual Basic Version”)

Dim myControl As New myControl

Dim serial As ISerializable = TryCast(myControl, ISerializable)

If Not serial Is Nothing Then

Dim anotherMoreSuccess As Boolean = serial.Save

Console.WriteLine(‘{0}’ Have{1}been successfully saved, with an optimized version., myControl.Data, IIf(anotherMoreSuccess, ” “, ” not “))

End If

Console.ReadLine()

End Sub

End Module

[C#]

class App

{

public static void Main()

{

Console.WriteLine(“C# Version”);

myControl myControl = new myControl();

ISerializable serial = myControl as ISerializable;

if (null != serial)

{

bool anotherMoreSuccess = serial.Save();

Console.WriteLine(‘{0}’ Have{1}been successfully saved, with an optimized version., myControl.data, (anotherMoreSuccess ? ” “ : ” not “));

}

Console.ReadLine();

}

}

The solution, with example projects may be downloaded from Interfaces.zip.

I hope this will be useful. 🙂

Anuncios

En el ámbito del desarrollo de software, siempre es bueno eliminar dependencias. En otros términos, bajar el nivel de acoplamiento.

Hay casos en que se logra más directamente y otros en que no es tan simple.

Para estos últimos contamos con un pattern llamado Dependency Injection, Inyección de Dependencia, término por primera vez usado por Martin Fowler. Si te interesa ir a la fuente, acá está su documento sobre Dependency Injection.

En este post voy a intentar explicar que viene a resolver este patrón y sus distintas implementaciones.

Cuando tenemos un objeto que necesita de otro para funcionar correctamente, tenemos definida una dependencia. Esta dependecia puede ser altamente acoplada, tight coupling, o levemente acoplada, loose coupling. Si el acoplamiento es bajo el objeto independiente es fácilmente reemplazable, si, en cambio el acoplamiento es alto, el reemplazo no es fácil y se dificulta el diseño de tests unitarios.

Supongamos que tenemos una clase que define un producto, que necesita un componente, este componente puede provenir de distintos fabricantes, en general cubren las mismas funciones. Los productos son varios y alternativamente pueden valerse del componente de cualquier fabricante.

Si instanciamos uno de los componentes en forma directa necesitamos referenciarlo. Si el mercado nos exige cambiar de componente, tendríamos que eliminar la referencia anterior, crear la nueva, revisar si los métodos, funciones y propiedades son homogéneos, si no lo son, corregir el código donde sea necesario… Si a esto le agregamos que valdría la pena tener una versión con el primer componente y otra con el segundo, la situación empeora. Si hubiera cincuenta componentes alternativos, la situación ya sería inmanejable.

Acá es donde la necesidad del patrón Dependency Injection se hace evidente.

Supongamos que este conjunto de componentes ejecuta básicamente cuatro métodos, que son los que nosotros necesitamos: Initialize, Shutdown, Prepare y DoIt.

Entonces comencemos por escribir una interface que defina estos cuatro métodos:

[VB]

Public Interface ISomeHardware

Sub Initialization()

Sub Shutdown()

Sub Prepare()

Sub DoIt()

End Interface

[C#]

public interface ISomeHardware

{

void Initialization();

void Shutdown();

void Prepare();

void DoIt();

}

Las clases que definan los componentes deben implementar la interface ISomeHardware. En nuestro ejemplo, ComponentA y ComponentB:

[VB]

Public Class ComponentA

Implements ISomeHardware

Public Sub InitializationBegin() Implements ISomeHardware.Initialization

End Sub

Public Sub ShutdownBegin() Implements ISomeHardware.Shutdown

End Sub

Public Sub PrepareBegin() Implements ISomeHardware.Prepare

End Sub

Public Sub DoItBegin() Implements ISomeHardware.DoIt

End Sub

End Class

Public Class ComponentB

Implements ISomeHardware

Public Sub InitializationBegin() Implements ISomeHardware.Initialization

End Sub

Public Sub ShutdownBegin() Implements ISomeHardware.Shutdown

End Sub

Public Sub PrepareBegin() Implements ISomeHardware.Prepare

End Sub

Public Sub DoItBegin() Implements ISomeHardware.DoIt

End Sub

End Class

[C#]

class ComponentA : ISomeHardware

{

public void Initialization() { }

public void Shutdown() { }

public void Prepare() { }

public void DoIt() { }

}

class ComponentB : ISomeHardware

{

public void Initialization() { }

public void Shutdown() { }

public void Prepare() { }

public void DoIt() { }

}

Aclaración: Acá hago una simplificación a efecto didáctico. Las clases que definen ComponentA y ComponentB, en realidad debieran ser wrappers de las dll’s provistas por los fabricantes. Para no complicar inútilmente las dejaré así.

Veremos tres implementaciones del patrón Dependency Injection: por Constructor, por Setter y por Interface.

Por Constructor:

Ahora voy a usar otro patrón llamado Facade o Fachada, la idea es encapsular todos los aspectos complejos de un subsistema de clases en una única y simple interface. En nuestro caso, ProductFacade:

[VB]

Public Class ProductFacade

Private SomeHardware As ISomeHardware

Public Sub New(ByVal pSomeHardware As ISomeHardware)

SomeHardware = pSomeHardware

End Sub

End Class

[C#]

public class ProductFacade

{

private ISomeHardware SomeHardware;

public ProductFacade(ISomeHardware SomeHardware)

{

this.SomeHardware = SomeHardware;

}

}

En esta clase se implementa la Inyección de Dependencia por medio del constructor, que acepta un parámetro de entrada de tipo de interface ISomeHardware. Este punto es determinante. Cualquier clase que implemente la interface ISomeHardware es aceptada como parámetro del constructor de ProductFacade. Este es todo el secreto.

Entonces, para inyectar la dependencia de un componente de un fabricante u otro por Constructor, se hace así:

[VB]

Dim ComponentA As ISomeHardware = New ComponentA

Dim Product01 As ProductFacade = New ProductFacade(ComponentA)

Dim ComponentB As ISomeHardware = New ComponentB

Dim Product02 As ProductFacade = New ProductFacade(ComponentB)

[C#]

ISomeHardware componentA = new ComponentA();

ProductFacade product01 = new ProductFacade(componentA);

ISomeHardware componentB = new ComponentB();

ProductFacade product02 = new ProductFacade(componentB);

Realmente elegante.

Para las siguientes dos implementaciones del patrón, usaremos la misma interface ISomeHardware y la definición de las clases ComponentA y ComponentB.

Las variaciones estarán en la Fachada y en la Inyección de Dependencia.

Por Setter:

En este caso la Inyección de Dependencia se efectiviza a través de una propiedad definida en la Fachada.

[VB]

Public Class ProductFacade

Private mSomeHardware As ISomeHardware

Public Property SomeHardware() As ISomeHardware

Get

Return mSomeHardware

End Get

Set(ByVal value As ISomeHardware)

mSomeHardware = value

End Set

End Property

End Class

[C#]

public class ProductFacade

{

private ISomeHardware SomeHardware;

public ISomeHardware Component

{

get

{

return SomeHardware;

}

set

{

SomeHardware = value;

}

}

}

Para el caso de Setter, la Inyección de Dependencia queda determinada así:

[VB]

Dim ComponentA As ISomeHardware = New ComponentA

Dim Product01 As ProductFacade = New ProductFacade()

Product01.SomeHardware = ComponentA

Dim ComponentB As ISomeHardware = New ComponentB

Dim Product02 As ProductFacade = New ProductFacade()

Product02.SomeHardware = ComponentB

[C#]

ISomeHardware componentA = new ComponentA();

ProductFacade product01 = new ProductFacade();

product01.Component = componentA;

ISomeHardware componentB = new ComponentB();

ProductFacade product02 = new ProductFacade();

product02.Component = componentB;

Por Interface:

Ahora la Inyección de Dependencia está implementada sobre un método que acepta un parámetro de tipo de interface ISomeHardware.

[VB]

Public Class ProductFacade

Private mSomeHardware As ISomeHardware

Public Sub SetComponent(ByVal pSomeHardware As ISomeHardware)

mSomeHardware = pSomeHardware

End Sub

End Class

[C#]

public class ProductFacade

{

private ISomeHardware SomeHardware;

public void SetComponent(ISomeHardware SomeHardware)

{

this.SomeHardware = SomeHardware;

}

}

Cuando la Inyección de Dependencia es por Interface, se invoca de esta forma:

[VB]

Dim ComponentA As ISomeHardware = New ComponentA

Dim Product01 As ProductFacade = New ProductFacade()

Product01.SetComponent(ComponentA)

Dim ComponentB As ISomeHardware = New ComponentB

Dim Product02 As ProductFacade = New ProductFacade()

Product02.SetComponent(ComponentB)

[C#]

ISomeHardware componentA = new ComponentA();

ProductFacade product01 = new ProductFacade();

product01.SetComponent(componentA);

ISomeHardware componentB = new ComponentB();

ProductFacade product02 = new ProductFacade();

product02.SetComponent(componentB);

Las tres implementaciones difieren sutilmente entre si. La diferencia más importante que yo encuentro es que, Por Constructor, nos obliga a inyectar al crear la clase, mientras que las otras modalidades, la difieren para más adelante.

La diferencia entre estas dos últimas está en si se prefiere inyectar la dependencia en el set de una propiedad, Por Setter, o como argumento de un parámetro de entrada a un método o función, Por Interface. Cuestión de gusto sintáctico.

Espero que les sea útil. 🙂

En este post voy a escribir sobre métodos genéricos. La idea es presentar un método que acepte dos parámetros de tipo genérico.

Para quien no maneje el concepto de Generics recomiendo antes leer este post.

Vamos a usar un proyecto de tipo Consola con Visual Studio .NET, y la misma clase Libro que usé en el post anterior.

Primero, referenciamos lo siguiente:

C#

using System;

using System.Collections.Generic;

VB.NET

Imports System

Imports System.Collections.Generic

Ahora si, la clase Libro:

C#

public class Libro

{

public string sTitulo, sAutor;

public Libro(string Titulo, string Autor)

{

sTitulo = Titulo;

sAutor = Autor;

}

public override string ToString()

{

return string.Format(“{0} escribió {1}.”, sAutor, sTitulo);

}

}

VB.NET

Public Class Libro

Dim sTitulo, sAutor As String

Public Sub New(ByVal Titulo As String, ByVal Autor As String)

MyBase.New()

sTitulo = Titulo

sAutor = Autor

End Sub

Public Overrides Function ToString() As String

Return String.Format(“{0} escribió {1}.”, sAutor, sTitulo)

End Function

End Class

En el módulo principal codificamos nuestro método MostrarPorConsola que podrá recibir dos parámetros de cualquier tipo:

C#

static void MostrarPorConsola<T>(ref T a, ref T b)

{

Console.WriteLine(“Primer  argumento del método MostrarPorConsola(), {0}, de tipo {1}.”, a, typeof(T));

Console.WriteLine(“Segundo argumento del método MostrarPorConsola(), {0}, de tipo {1}.”, b, typeof(T));

}

VB:NET

Private Sub MostrarPorConsola(Of T)(ByRef a As T, ByRef b As T)

Console.WriteLine(“Primer  argumento del método MostrarPorConsola(), {0}, de tipo {1}.”, a, GetType(T))

Console.WriteLine(“Segundo argumento del método MostrarPorConsola(), {0}, de tipo {1}.”, b, GetType(T))

End Sub

El método imprime una línea con el primer argumento y otra más con el segundo, sin interesar de que tipo son.

En la rutina principal consumimos al método genérico, primero declaro dos enteros, les asigno un valor y se los paso como parámetros al método MostrarPorConsola, luego declaro dos objetos de tipo Libro, los hidrato y se los paso como parámetros al mismo método.

Parece mentira… pero funciona 🙂

A partir de la versión 2.0 del Framework .NET contamos con el namespace Generics que define una cantidad de clases e interfaces que permiten administrar sub ítems en una variedad de contenedores. En este post me voy a dedicar al contenedor List<T> o List(Of T) según sea C# o VB.NET

Veamos un ejemplo de colección sin Generics. Con Visual Studio .NET, abrimos un nuevo proyecto de Consola, si queremos manipular un conjunto de objetos, por ejemplo Libros, en primer lugar tenemos que referenciar lo siguiente:

C#

using System;

using System.Collections;

VB.NET

Imports System

Imports System.Collections

y definir la clase Libro:

C#

public class Libro

{

public string sTitulo, sAutor;

public Libro(string Titulo, string Autor)

{

sTitulo = Titulo;

sAutor = Autor;

}

public override string ToString()

{

return string.Format(“{0} escribió {1}.”, sAutor, sTitulo);

}

}

VB.NET

Public Class Libro

Dim sTitulo, sAutor As String

Public Sub New(ByVal Titulo As String, ByVal Autor As String)

MyBase.New()

sTitulo = Titulo

sAutor = Autor

End Sub

Public Overrides Function ToString() As String

Return String.Format(“{0} escribió {1}.”, sAutor, sTitulo)

End Function

End Class

Además, necesitamos programar otra clase, por ejemplo BibliotecaCollection que implemente la intefaz IEnumerable. En nuestro caso le agregaremos un método AgregarLibro que recibe un parámetro de tipo Libro y lo agrega a un ArrayList que la clase encapsula.

El tipo ArrayList en el namespace Collection, es el equivalente al tipo List<T> o List(Of T) del namespace Generics

C#

public class BibliotecaCollection : IEnumerable

{

private ArrayList arBiblioteca = new ArrayList();

public BibliotecaCollection() { }

public void AgregarLibro(Libro pLibro)

{

arBiblioteca.Add(pLibro);

}

IEnumerator IEnumerable.GetEnumerator()

{

return arBiblioteca.GetEnumerator();

}

}

VB.NET

Public Class BibliotecaCollection

Implements IEnumerable

Private arBiblioteca As ArrayList = New ArrayList

Public Sub New()

MyBase.New()

End Sub

Public Sub AgregarLibro(ByVal pLibro As Libro)

arBiblioteca.Add(pLibro)

End Sub

Function IEnumerable_GetEnumerator() As IEnumerator Implements IEnumerable.GetEnumerator

Return arBiblioteca.GetEnumerator

End Function

End Class

Cualquier otro tipo de función que queramos que soporte la clase, debemos codificarla. Para este ejemplo sólo vamos a dejar definida la función AgregarLibro.

Ahora si podemos hacer uso de nuestra biblioteca en una aplicación de consola:

C#

class Program

{

static void Main(string[] args)

{

Console.WriteLine(“Collections\n”);

BibliotecaCollection miBiblioteca = new BibliotecaCollection();

miBiblioteca.AgregarLibro(new Libro(“Trópico de Cáncer”, “Henry Miller”));

miBiblioteca.AgregarLibro(new Libro(“Yonqui”, “William Burrougs”));

miBiblioteca.AgregarLibro(new Libro(“Esperando a Godot”, “Samuel Beckett”));

miBiblioteca.AgregarLibro(new Libro(“La senda del perdedor”, “Charles Bukowski”));

miBiblioteca.AgregarLibro(new Libro(“En el camino”, “Jacques Kerouac”));

foreach (Libro pLibro in miBiblioteca)

Console.WriteLine(pLibro);

Console.ReadLine();

}

}

VB.NET

Module Module1

Sub Main()

Console.WriteLine(“Collections”)

Dim miBiblioteca As BibliotecaCollection = New BibliotecaCollection

miBiblioteca.AgregarLibro(New Libro(“Trópico de Cáncer”, “Henry Miller”))

miBiblioteca.AgregarLibro(New Libro(“Yonqui”, “William Burrougs”))

miBiblioteca.AgregarLibro(New Libro(“Esperando a Godot”, “Samuel Beckett”))

miBiblioteca.AgregarLibro(New Libro(“La senda del perdedor”, “Charles Bukowski”))

miBiblioteca.AgregarLibro(New Libro(“En el camino”, “Jacques Kerouac”))

For Each pLibro As Libro In miBiblioteca

Console.WriteLine(pLibro)

Next

Console.ReadLine()

End Sub

End Module

Ahora, con Generics, no necesitamos de la clase BibliotecaCollection, ni implementar la interfaz IEnumerable, ni el método adicional AgregarLibro.

Sólo necesitamos declarar una lista genérica de Libros de la siguiente forma:

C#

List<Libro> miBiblioteca = new List<Libro>();

VB.NET

Dim miBiblioteca As List(Of Libro) = New List(Of Libro)

Tenemos que modificar levemente las referencias a:

C#

using System;

using System.Collections.Generic;

VB.NET

Imports System

Imports System.Collections.Generic

Y con la misma declaración de la clase Libro que tenemos más arriba usamos nuestra lista genérica de Libros de esta forma:

C#

class Program

{

static void Main(string[] args)

{

Console.WriteLine(“Generics\n”);

List<Libro> miBiblioteca = new List<Libro>();

miBiblioteca.Add(new Libro(“Trópico de Cáncer”, “Henry Miller”));

miBiblioteca.Add(new Libro(“Yonqui”, “William Burrougs”));

miBiblioteca.Add(new Libro(“Esperando a Godot”, “Samuel Beckett”));

miBiblioteca.Add(new Libro(“La senda del perdedor”, “Charles Bukowski”));

miBiblioteca.Add(new Libro(“En el camino”, “Jacques Kerouac”));

foreach (Libro pLibro in miBiblioteca)

Console.WriteLine(pLibro);

Console.ReadLine();

}

}

VB.NET

Module Module1

Sub Main()

Console.WriteLine(“Generics”)

Dim miBiblioteca As List(Of Libro) = New List(Of Libro)

miBiblioteca.Add(New Libro(“Trópico de Cáncer”, “Henry Miller”))

miBiblioteca.Add(New Libro(“Yonqui”, “William Burrougs”))

miBiblioteca.Add(New Libro(“Esperando a Godot”, “Samuel Beckett”))

miBiblioteca.Add(New Libro(“La senda del perdedor”, “Charles Bukowski”))

miBiblioteca.Add(New Libro(“En el camino”, “Jacques Kerouac”))

For Each pLibro As Libro In miBiblioteca

Console.WriteLine(pLibro)

Next

Console.ReadLine()

End Sub

End Module

Como vemos en el namespace Generics se resuelve todo lo que antes debíamos codificar en una clase adicional, en este ejemplo BibliotecaCollection.

Los otros contenedores del namespace que no cubro en este post son:

Collection<T>, la base de una colección genérica,

Comparer<T>, Comparación de igualdad entre dos objetos genéricos,

Dictionary<K, V>, colección genérica de pares nombre/valor,

Queue<T>, implementación genérica de lista FIFO (first-in, first-out),

SortedDictionary<K, V>, implementación genérica de un conjunto ordenado de pares nombre/valor,

Stack<T>, implementación genérica de lista LIFO (last-in, first-out),

LinkedList<T>, implementación genérica de una lista doblemente vinculada,

ReadOnlyCollection<T>, implementación de un conjunto de items genéricos de sólo lectura.

En fin, contamos con una nueva serie de elementos para aprovechar la potencia del Framework.

TDD, Test Driven Development, es una técnica que establece que primero se escriben las pruebas y luego el código del aplicativo.

Estas pruebas se efectúan de acuerdo a lo que se espera que haga el aplicativo, es por eso que algunos popes de esta disciplina dicen que practicándola intensivamente podemos prescindir de la documentación ya que el código de las pruebas es en si mismo documentación acerca del aplicativo.

En otras palabras las pruebas especifican lo que se espera de la aplicación a desarrollar.

Esta práctica es de amplia difusión en las Metodologías Ágiles, con esto se garantiza código de calidad desde el inicio del proceso de desarrollo y proporciona un buen elemento para el establecimiento de métricas.

El Ciclo TDD se compone de los siguientes pasos:

  • Escribir un test, aún de algo que todavía no hayamos codificado,
  • Compilar, va a dar error, ya que todavía no hemos codificado lo que estamos probando,
  • Escribir la mínima cantidad de código para que compile, aunque sea la cabecera del método o función a probar,
  • Compilar, ahora no da error, estamos en condiciones de ejecutar nuestro Test,
  • Ejecutar el test, falla, ya que habíamos escrito la mínima cantidad de código que garantice la compilación, pero no la ejecución del Test,
  • Escribir la mínima cantidad de código para que el Test no falle,
  • Ejecutar el test, esta vez no falla,
  • Refactorizar, este es un tema aparte, hay variadas técnicas de refactorización y muchos buenos libros escritos, más adelante veremos someramente alguna de esas técnicas,
  • Recomenzar escribiendo un nuevo Test.

Es habitual encontrar TDD asociado a estas tres palabras en sus respectivos colores:

Red, Green, Refactor

Estos son términos y colores asociados a la familia de herramientas de Test Unitarios xUnit, dela que usaremos NUnit, se pueden descargar la última versión desde http://www.nunit.org, también van a encontrar documentación.

Red, está asociado a la ejecución fallida de uno o más Tests.

Green, es el color que se ve en la IDE de NUnit al ejecutar exitosamente uno o más Test.

Refactor, lo podemos ver cuando estamos refactorizando nuestro proyecto de Testing.

Es muy importante que las modificaciones se hagan en pequeños pasos, esto hace a la estabilidad del código probado a lo largo del proceso de desarrollo. Una buena estrategia de Testing evita los grandes objetos, los Test integrales, la interdependencia entre las pruebas.

Una buena estructura TDD tiende a que el equipo de desarrollo esté más y mejor comunicado. Como se elimina la probabilidad de romper funcionalidad existente al liberar código nuevo, se eliminan temores a “papelones”.

La Barra Verde que nos muestra NUnit cuando los Test son exitosos se convierten en un factor motivacional positivo.

Por su propia naturaleza, TDD elimina los problemas derivados de las contínuas postergaciones del Debugging.

¿Y?… ¿cómo se hace?…

Te pido que me esperes a que termine el próximo post. 🙂

Asesoramiento a Organizaciones Públicas y Privadas.

Cursos a grupos ya constituidos.

Charlas de orientación.

Metodologías Ágiles.

Startups.

Visitas

  • 136,970 hits

Mejor calificado

del.icio.us